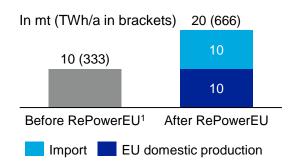
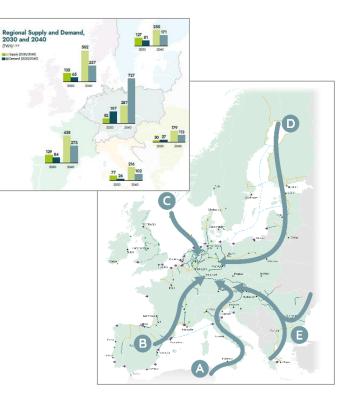


Kde a kdy se v ČR objeví vodík a kolik bude stát?


SŽ, Praha 3.10. 2023

Ambition: REPowerEU 2030


- EU plan to address the current energy security crisis
- Focus on supply diversification, energy savings, and accelerated transition to clean energy
- Hydrogen is integral part of this plan
 - Increase of 2030 supply target from 10¹ to 20 mt of renewable H2
 - Recognizing the importance of import to meet this target (50% of the target to come from non-EU import)

REPowerEU 2030 H2 supply target

Enabler: European Hydrogen Backbone

- Regional differences in supply and demand show the importance of connecting regions across Europe
- Five supply corridors defined to ensure access to supply across all demand regions

N4G / Czechia position

Net4Gas / Czechia well positioned: 3 out of 5 corridors utilize N4G assets

- A: North Africa & Southern Europe: Entry point @ Lanzhot for domestic demand and export to Germany
- E: East and South-East Europe: Entry point @ Lanzhot esp. for domestic demand and export to Germany
- D: Nordic and Baltic regions: Entry point @ Brandov esp. for transit from/to Germany

N4G launched H2 Readiness program in Jan 2021

Strategic, technical, and organizational aspects covered

Hydrogen readiness						
1 Market & flow scenarios	2 Grid readiness					
 Monitor H₂ adoption within EU (and key regions) 	 Evaluate compatibility of the existing N4G grid for 5% and 10% H2 blends, and identify critical bottlenecks 					
 Develop H₂ supply / demand trends and resulting flow / blending 	 Evaluate on high-level compatibility of selected coherent / separated parts of the existing N4G grid with pure H2 transport 					
scenariosIdentify potential priority grid sections for capability improvement	 Develop strategies for 5%, 10% and 100% H2 Readiness of the N4G grid incl. implementation roadmap and required financial costs Develop key H2 requirements for new investments 					

Policy & regulation

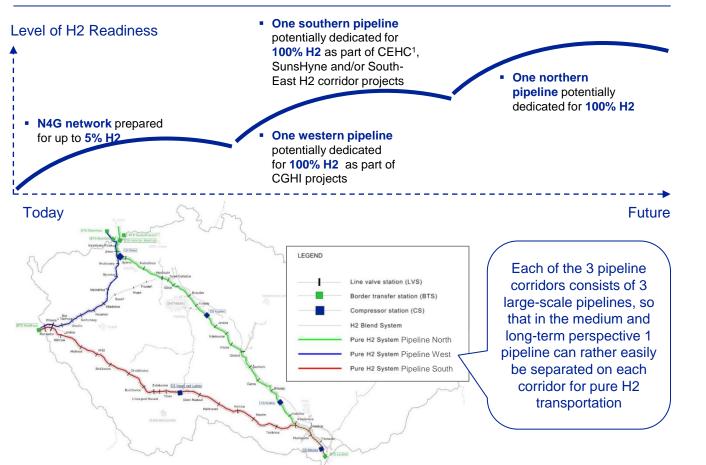
- Participate in development of required legislation & regulation changes to enable H2 in the Czech grid and set clear requirements for formal (re)qualification of N4G assets for H2
- Monitor development of key EU-wide legislation and resulting threats / opportunities

Partnerships

4

 Identify and develop relevant partnerships / cooperation with neighboring TSOs and other players within the emerging hydrogen value chain to focus on key topics such as joint transport projects, grid readiness, H2 injection, or deblending

Organization & Governance


5

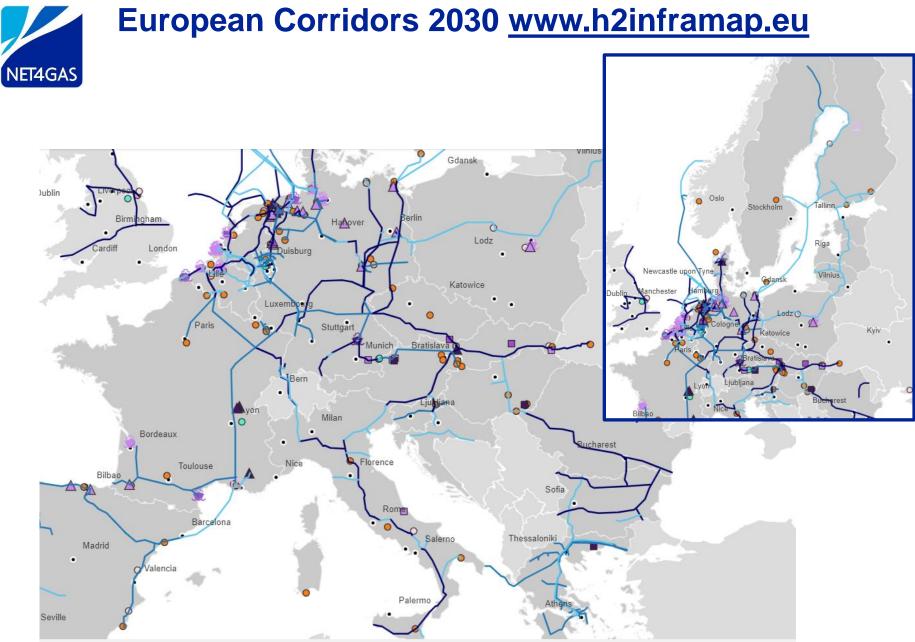
- Define the necessary project organization structure and build strong H2-only focused core team
- Ensure gradual transfer of hydrogen related know-how to the entire organization

3

Emerging H2 mid-term vision (and a great starting position for Czechia)

Comments

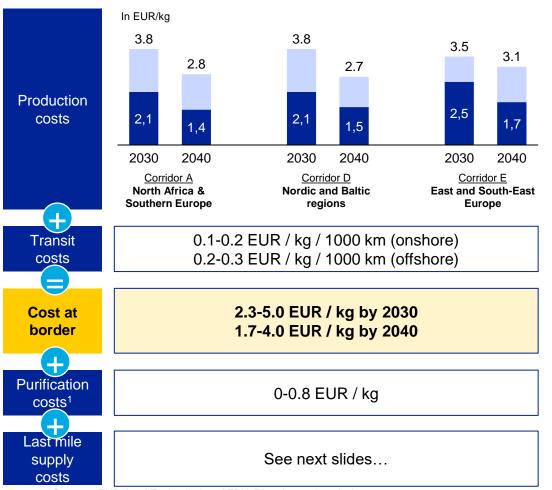
- Initial vision given current uncertainties
- First appearance of H2 (blend) in N4G network expected by ~2025
- First dedicated N4G hydrogen corridors expected to be made available via repurposing of existing infrastructure ~2030
- To-date results strongly indicate viability of H2 retrofits of existing N4G infrastructure at reasonable costs


All triangle corridors are currently being developed in dedicated projects together with other TSO partners: German OGE, Ontras, Gascade, Slovak Eustream, Austrian TAG, Italian SNAM, and Ukrainian Gas TSO of UA

4

We are currently developing 5 pure H2 tranport corridor partnerships

Partnership	Participants	Description	Maturity	PCI submitted	Pre-selected for PCI by EC
CEHC		 H2 transport from Ukraine to Germany via SK and CZ Utilization of southern N4G branch since 2030¹ 	Pre-feasibility in progress		
SunsHyne		 H2 transport from North Africa & Italy to Germany via AT, SK and CZ Utilization of southern N4G branch since 2030¹ 	Pre-feasibility in progress		
СGНІ	NET4GAS	 H2 transport from Baltic sea and North Germany to South Germany Utilization of western N4G branch from 2030¹ 	Pre-feasibility In progress		
N4G & Ontras	••ONTRAS	 H2 transport from Lanžhot to Ontras network in North Germany Utilization of northern N4G branch after 2035¹ 	Project concept in progress		
South- East Corridor	BULGARTITRANSGAZ DESFA + others in progress	 H2 transport from Turkey and/or Greece Europe to Germany via BG, RO, HU, SK Utilization of southern N4G branch after 2030¹ 	Partnership forming		



7

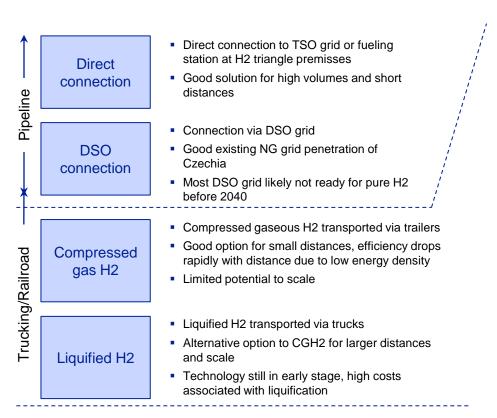
Hydrogen imports will ensure affordable access to hydrogen at scale from 2030

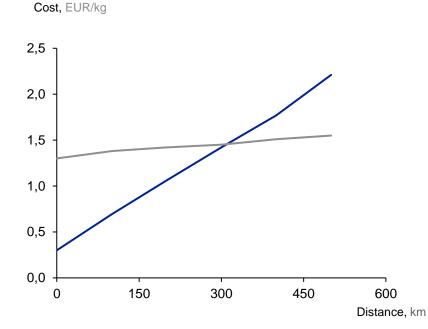
Estimated costs of imported renewable & low carbon H2

Comments

- Cost of renewable & low carbon H2 imported to CZ borders: 2.3-5.0 EUR/kg in 2030, 1.7/4.0 EUR/kg in 2040 vs. realistic cost of domestic production of renewable H2: 8-15 EUR/kg in 2030
- Potential of low production costs in favorable regions already proven in Gulf region:
 - Green H2: 2 EUR/kg today, 1.4 by 2030, 1.1 by 2050
 - Blue H2: 1.3 EUR/kg today, 1.1 by 2030
- Key drivers of reducing the price of imported renewable and low carbon H2
 - Support of more colors of hydrogen blue H2 as more affordable alternative (at least during the initial phase)
 - Connection to multiple source regions 1. Higher chance of actual supply 2. Increased competition for producers
- Imported H2 will most likely require purification to ensure desired quality for mobility

Sources: EHB, Leef Technologies, AFRY, Rina, internal analysis


1. Subject to required technical grade of hydrogen. Assuming technical grade of 1.8 (98% purity) – 2.5 (99.5%) can be achieved when transporting via repurposed gas pipelines. Currently assuming cost of 0.8 EUR/kg to purify H2 from technical grade of 1.8 (98%) to 3.7 (99.97%). Assuming technical grade of 3.7 as sufficient for FCEV

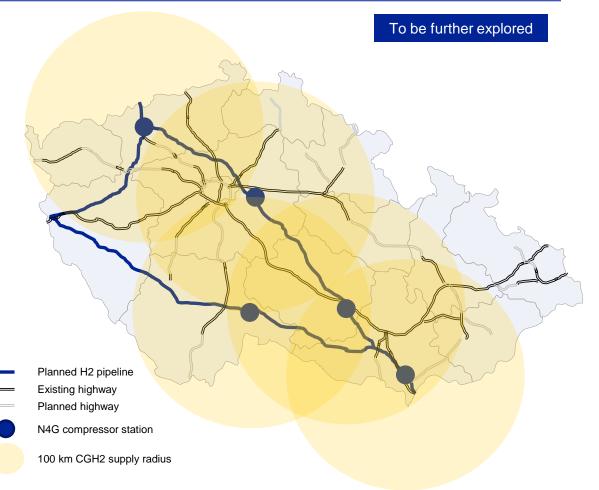


Last mile supply: Overview of options to supply H2 fueling stations from planned H2 triangle

Overview of last mile options for connecting H2 fueling stations

Costs and options for distribution (trucking only)

- CGH2 - LH2



Last mile supply: Developing last mile supply infrastructure along H2 triangle could accelerate H2 development within mobility sector

Comments

Illustrative example: 100km geographical reach of CGH2 filling hubs at N4G compressor stations

- Utilization of H2 supply infrastructure along the planned H2 triangle could enable access to affordable hydrogen, accelerating of the development of hydrogen consumption in mobility sector
- Several options to be considered:
 - Option A: Filling stations for CGH2 transport to H2 fueling stations
 - Option B: H2 fueling stations directly at the premises of H2 triangle
- Example: Building CG H2 supply infrastructure at the locations of N4G compressor stations could cover most of the highway infrastructure in Czechia

